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Viterbi  Algorithm  Detector  for Bernoulli-Gaussian 
Processes 

CHONG-YUNG CHI, MEMBER, IEEE, AND JERRY M. MENDEL, FELI,OW,  IEEE 

Abstmt-This  paper shows  how to  apply  the Viterbi algorithm  to 
detect randomly located impulses which  have Gaussian distributed am- 
plitudes. Our detector  can deal with  cases of severely  overlapping wave- 
lets.  Experimental  results  and  comparisons  to Kormylo  and Mendel’s 
[12] single-most-likely-replacement detector are provided, using syn- 
thetic data. 

T 
I. INTRODUCTION 

HE Viterbi algorithm (VA) [l] , [6], [7] has  been  ap- 
plied to a wide  range of  problems in the communica- 

tion’s area. Recently, it was also applied to well-log de- 
glitching and  seismogram inversion [2], [ 141. 

In  this paper, we show how to apply the VA to the de- 
tection of a Bernoulli-Gaussian sequence, m d  we com- 
pare  it, via some simulation studies,  to Kormylo and  Men- 
del’s single-most-likely-replacement (SMLR)  detector 
[ 121. Both the VA and  SMLR  detectors  are derived based 
on  the  same likelihood function and are suboptimal. The 
VA detector  has a very nice parallel processing structure 
and its performance  is  comparable to the  SMLR detector. 
The VA detector  is noniterative and so-its computational 
load is constant. On  the other hand, the SMLR  detector 
is  iterative, so its computational load depends upon its ini- 
tial conditions. 

The total computation of the VA detector  depends upon 
the dimension of the  state innovation diagram.  When par- 
allel processing is available, the VA detector requires only 
about  two  Kalman filters. On the other  hand, the SMLR 
detector requires 2 1  Kalman  filters,  where Z is the total 
number of iterations for its  convergence.  In this case, the 
VA detector  becomes much faster than the SMLR  detec- 
tor. 

We assume that all  the information needed  to  implement 
the VA detector  is known a priori. What that information 
is will be  made clear in a latersection. 

11. SYSTEM AND STATISTICAL MODELS 
As in Kormylo and  Mendel [12], our starting point is 

the  familiar  discrete-time convolutional model (see Fig. 1) 
k 

z(k) = ,x V(k - 59 Po’) + n(k). (1) 
J =  1 
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Fig. 1. System model. 

In this model, p(k )  is the input impulse signal train which 
is assumed  to be Bernoulli-Gaussian [3]. It can  be ex- 
pressed as  the following product  model: 

p(k) = r(k) q(k) (2) 

in  which r(k) is zero  mean,  white,  and  Gaussian,  with 
variance 

E[?(k)] = c (3) 

and, q(k )  is a Bernoulli sequence, with 

Noise n(k) is  zero  mean,  white,  and  Gaussian,  with vari- 
ance 

E[n2(k)] = R.  ( 5 )  

Signal V(k) (which can  be  thought of as  the  impulse re- 
sponse of a linear time-invariant system)  is  assumed  to 
have an autoregressive moving average (ARMA) struc- 
ture,  i.e., 

. .  

1 - c q 2 - i  
i =  1 

System (1)-(6) can  also  be realized by the state-variable 
model 

x(k)  = 9x(k  - 1) + Y,(k) (7) 

and 

z(k) = h’x(k) + n(k) (8) 

where 9 is an n X n matrix, Y and h are n X 1 vectors, 
and Qi, Y ,  and h are functions of ai and pi. Of course, 
given a transfer function of a linear time-invariant system, 
there exist many (9, Y ,  h)’s which generate the same  out- 
put z(k) .  

In Section 111,  we begin  with  the data {z(l), 2(2), - - * , 
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z (N)}  and,  as based on the above system and statistical 
models, derive  the VA for detecting {q(l), q(2); , 
q ( N ) }  by maximizing the likelihood function S(qNIzN} 

s{qNlzN> = P(zNIqN) pr(qN) (9) 

where zN and qN are  the two column vectors of 

zk  = col ( z (k) ,  z(k - I), * ’, z(1)) (10) 

and 

qk = col (q(k) ,   q(k - 11, ’ ’ 7 d l ) )  (11) 

when k = N .  Before we derive  the VA,  we briefly review 
the  SMLR  detector so that  one can easily see  the  charac- 
teristics of both detectors. 

The SMLR detector is an  iterative  search algorithm that 
compares  the likelihood for  a  “reference” sequence qr to 
the likelihoods of a  limited number of different “test” se- 
quences qr, in each iteration.  The  SMLR  detector was de- 
rived by assuming that qt differs from qr at only one lo- 
cation, so that  there  are only N possible test sequences for 
a given reference sequence. The log-likelihood-ratio de- 
cision rule for choosing between qr and qt is given by 

where qt is  the sequence 
,- 

Let k‘ be associated with the maximum value of  In A&) 
(k  = 1, 2, - - , N ) .  Then the  SMLR  test sequence is 

It  is  also true that the log-likelihood function evaluated for 
q; is at least as  large  as  its value evaluated for qr. 

As pointed out by Kormylo and Mendel [ 121 , the SMLR 
search  algorithm,  initiated by qr = q@),  computes N log- 
likelihood ratios corresponding to N different qt se- 
quences.  The most likely qt sequence is used as  the 
reference sequence for the next iteration. If after i it- 
erations we obtain a  reference qr = q‘”, which is more 
likely than any of the corresponding qr sequences, then the 
search  stops and 4 = is the final detected event se- 
quence. 

where ~0 indicates no observations. 
Because q(1),  q(2), - - - , q ( N )  are independent, 

N 

Pr(qN) = Pr(q(k)). (18) 
k= 1 

Substituting (17) and (18) into  (9), we obtain 
N 

S{qivlzN} = IT P(z(k)lzk-l, qk) Pr(q(k))* (19) 
k=  1 

B. Objective Function 
Maximizing S(zNlqN} is equivalent to minimizing -In 

S{qNIzN}, because -In ( * ) is a monotonically decreasing 
function. We, therefore, define the objective function to 
be minimized as 

N 

J ( q N )  = -In S{(IN(zN} = d(k7  qk) (20) 
k= 1 

where 

d(k, qk) = -lnP(Z(k)IZk-1, qk) - In Pr(q(k)). (21) 

The  Viterbi algorithm detector to be derived later  re- 
quires that function  d(k, &) be expressed as  a function of 
afinite-state  occurring at times k and k - 1. Let 

Q(k) 4 col (q(k) ,   q(k - l),  * , q(k - L + 1))  (22) 

where L is an  arbitrary positive integer  and q(i) = 0 for 
all  i 5 0. Because 4(k )  can  take on only two values, unity 
or  zero, Q(k) can have 2L possible (vector) values. Let 

TL = {s(s = col (ul,  a2, , uL), 

ai = 0 or 1, i = 1, 2, e ,  L } .  (23) 

This  set  includes  all possible vectors assumed by Q(k). 
’I1* OF THE q(k) The total number of elements in TL is M = 2L. Because 

A .  Likelihood Function TL is a finite set, we, therefore,  refer to Q(k) as  a finite- 
Our objective is  to obtain optimal estimates t j N ,  such state, and we number them sl,  s2, * * * , sM. Next, we try 

that S{qNlzN} is a maximum when q,,, = qN We now ob- to express the objective function J as  a function of Q(l), 
tain expressions for p(zN(  qN) and Pr(q,,,). Q(2), - - , Q(N), instead of qN. 
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Let 8k be  the following column vector (i.e., admissible 
state sequence) 

0, = col (Q(k),  Q(k - 11, * * , QUI) (24) 

in which Q ( j )  satisfies the following constraint. When 

Q(k) = col (a l ,  u2, 5 UL) E TL (25) 

and 

Q(k - 1) = C O ~  (b1, b2, . , bL)E T L  (26) 

then 
a .  = b .  L - l  tl 2 I i I L. (27) 

For any q N  sequence,  there exists a unique admissible state 
sequence 6, formed from  the elements of q N  via (22) and 
(24). Additionally, for any admissible state sequence ON, 
there exists a unique qN sequence formed by 

q(k) = first element of Q(k).  (2 8) 

For example, assume  that L = 3, N = 5 ,  and q N  = (1, 1, 
0, 1, 1)’.  Then  the  corresponding admissible state se- 
quence O N  is 

8N=COl(l 1 0  1 0  1 0 1 1   1 1  0 1 0 0 )  ----. . ‘ 
Q’(5) Q’(4) Q’(3)  Q’(2) Q‘U) ’ (29) 

Similarly, when O N  is given by (29) then q N  = (1, 1, 0, 1, 
1)‘. Hereafter, we assume  that O N  denotes  an admissible 
state  sequence. 

We can  therefore express (20) as 
N 

J ( q N )  = J (  0,) = d(k, e k )  (30) 
i = l  

where 

d ( k  8,) = d(k,  q k ) .  (3 1) 

Because q(k) is a binary sequence,  determining  the 
globally optimal qN requires 2N evaluations of (30), where 
2N is an enormous number. It is infeasible, therefore,  to 
find the globally optimal qN (or O N )  by this method. We 
are forced to find a suboptimal value for q N  (or O N ) ,  de- 
noted q N  (or 6 N ) .  

C. Viterbi Algorithm 
Next, we propose  a recursive suboptimal detector,  a Vi- 

terbi Algorithm (VA) detector, whose performance is 
comparable to Kormylo and Mendel’s SMLR detector. The 
SMLR  detector is also  a  suboptimal,  and is based on the 
same  criterion.  It is an  iterative  detector  that is not self- 
starting. The VA detector  is  a noniterative detection  al- 
gorithm that is self-starting. 

the  traditional VA is identical to finding the  shortest 
route through a certain  graph. To do this one constructs  a 
state innovation diagram called a  trellis. Fig. 2 depicts a 
state innovation diagram  in which each node represents  a 
distinct  state at a given time,  and  each branch represents 
a  transition to some new state  at  the next instant of time. 
In Fig. 2, sl, s2, * - - , sM comprise  the complete set of 

Initial Stage Fino1 Stage 

Fig. 2. State innovation diagram. 

finite-states. Note that  a  finite-state  is not necessarily a 
vector. Each node  in Fig. 2 can have M incoming branches 
and outgoing branches except Q(0)  and Q ( N ) .  In Fig. 2, 
we just show some of the branches and use two arrows  at 
each ndde to  indicate  other incoming and outgoing 
branches which are not shown in  the  diagram. Any branch 
length dk(i, j )  [see (35)] from sj at time point k - 1 to si 
at  time point k must be assigned ahead of time.  The VA 
finds the  shortest path through the  trellis, and the path 
length of the  shortest path is the desired minimum value 
of the objective function. 

Let 

where si E TL. Note that 8 ;  can be  an  arbitrary admissible 
state sequence Q(l), Q(2), - * , Q(k), with Q(k)  = si, 
and that Q(k) = si will put some restrictions on  Q(k - l), 
Q(k  - 2), * - , Q(k  - L + 1) due to the  constraints 
stated  in  (25) through (27). 

From (30),  (31), and (32) we see that for a fixed value 
of i ,  

J (  8;) = J ( 0 k - 1 )  + d(k, 8 ;) (33) 

and 

where 

J (  0;) can be thought of as the  “distance” from Q(1) to 
&(k) = si, and can be expressed as the  sum of the dis- 
tances from Q(1) to Q(k - l) ,  namely J (  Ok- J, and the 
distance from Q(k - 1) to Q(k) = si, namely d(k ,  6;). 
The minimum value of J (  8 ;) can be obtained by finding 
the minimum distances from Q(1) to Q ( k  - 1) = sj and 
then from sj to Q(k)  = si (for all 1 5 j 5 M ) ,  and, then 
finding the minimum value among these M values. Fig. 3 
depicts (33) and (34) by showing J ( 8 i )  associated with 
Q(k - 1) = si (1 I j I M )  and dk(i, j )  (which is the 
metric from state sj to s i ) ,  from  time point k - 1 to k .  The 
main recursive equation of the VA is derived from (34). 
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Fig. 3. Branches  from  the  state Q(k - 1) to  the  state Q(k).  

We discuss two cases next. The first is the  traditional VA 
case  in which dk(i, j )  depends only on Q(k) = si and 
Q(k - 1) = sj. In  this  case,  the VA is  optimal,  i.e.,  it can 
find min {J(QN)}. The second case is one  in which dk(i, j )  
not only depends upon Q(k) = si and Q(k - 1) = sj but 
also upon 0,- = col (Q(k - 2), Q(k - 3), . . , Q(1)). 
In  this  case  the VA is  suboptimal. 

Returning to the first case, we easily see that 

min [ J ( o ~ , - , )  + dk(i, j ) ]  = min [J( ~ j , -  1)1 + dk(i, j )  
e$- @ - I  

(36) 
because dk(i, j )  does not depend on e$- when j is fixed. 
In  this  case (34) can be simplified to the following equa- 
tion: 

ri,,  = min rk(i, j )  (37) 
1 S j S M  

where 

rdi, 11 = r j , k -  1 + ddi, j )  (38) 
and 

ri,, = min {.I($;)). (39) 
ei 

which implies 

rj , ,- ,  = Fin {~<ej,-,>>. 
e$- 1 

Fig. 4 depicts some branches and associated branch 
lengths from the state Q(k  - 1) to  the  state Q(k).  It also 
includes ri,k-l and ri,, at each mode. Value ri,, is ob- 
tained by scanning the  entire  state  space at time k - 1. 
For example, Fl ,k  is obtained by computing { q k  - + 
and choosing the smallest of these values. 

that 

dk(17 1>> ,  {r2 ,k -1  + dk(l, 2)), ’ 9 { r M , k - L  + dk(l, 

Finally, by recursively using (37) until k = N ,  we  have 

min ( ~ ( 6 ~ ) )  = min {mjn.J(oh)) 
@N 1 c i s M  8, 

= min ri,.+ (40) 

Now we return to the second case which, as it turns  out, 

l s i s M  

P M  
M.k 

Fig. 4. Branches from the  state Q(k - 1) to  the state Q(k).  

is  our situation. Recall  that  in this case dk(i, j )  depends 
on QU>, - * , Q(k - 1) = sj, Q(k) = si. In other 
words, the  branch length from Q ( k  - 1) = sj to Q(k) = 
si is different for different sequences Qtl),  Q(2), - , 
Q(k - 2). The beautiful recursive equations (37) and (38) 
are no longer true.  Finding min J (  6,) is independent of 
finding min J (  el,- 1) because we  have to  compute J( 6;) 
for all possible e i sequences even if min J (  6 j k  - 1) has beFn 
obtained. Next, we derive  a suboptimal VA for this case. 

Assume that we  have obtained 6 i k -  ri,k- at time 
point k - 1, for all 1 I i I M ,  where 8 t - is  an  estimate 
of i -  and 

ri,k-l = J(  9 6- l). (41) 

For simplicity, we use  the  same notation here, namely 
I ’ i , k -  1, as in (39). Note, although that for different cases, 
this notation can have different meanings. For a known 
value of 6iwl, 1 I j I M ,  we determine 6:> 1 I i I 
M, such that ri,k = J (  6 k )  is minimal just over 6 ,- 
1 I j I M ,  instead of over all possible Q1, Q2, - . , Q, 
( =si ) .  In other  words, 

ri,k = J (  8 i )  = min J (  6,) (42) 
Ai, k 

where 

Therefore, from (42) we  have 

ri,k = min J (  e,) = min + dk(i, j ) }  
Ai, k 1 c j c M  

= min rk(i, j) 
1 s j c M  

where dk(i, j )  is now defined as 

(43) 

(44) 

(45) 

Note that dk(i, j )  depends only on Q(k)  = si and a partic- 
ular  state sequence h i -  with Q ( k  - 1) = sj, which  is 
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already obtained at  the  time point k - 1. Therefore, dk(i, and 
j )  now depends only on Q(k) = si and Q(k - 1) = sj. 
Observe  that (44) is exactly the  same as (37). Although 
the  same recursive equation is obtained, dk(i, j )  in this 

= Si, o k - 1  = k - 1 1  (56) case  cannot  be  computed ahead of time. It can  be com- 
puted only when 84- is  obtained.  The suboptimal esti- for all Si and sj E TL which satisfy (48) and (49). Then [ 111 

jjj 

8’‘- is available. We choose dk(i, 13, as 
so that 

\a otherwise. (47) (58)  

Note  that dk(i, j )  = 00 occurs when si and sj do not satisfy Because In 27r is a constant, it can be neglected from  the 
(25)-(27), i.e., when it  is impossible to have, a transition objective function. Additionally, in  order  to save sQme 
from Q(k - 1) = sj to Q(k)  = si, because 8 k = col (si, computations we multiply the objective function by 2 be- e { -  l) is not an admissible state sequence. We assume  that cause doing this  does  not affect its optimality. 

Signals i&(klk - l),  ~ ( k l k  - l),  and consequently dk(i, 
(48) j )  can be obtained from  the following Kalman filter equa- si = C O ~  ( ~ 1 ,  bl, b2, * . a ,  bL-1) 

and tions (e.g., [lo] and [ll]) 

~j = C O ~  (b1, bz, ., bt) (49) q k l k  - 1) = +;.(k -1)lk - l), (59) 

where si, sj E TL. From (211, (31), and (47) We see that Pij(klk - 1) = +Pj(k - l)lk - I ) +  + yCaly’, (60) 
d d i , j )  = -lnp(z(k)Izk-l, Q(k) = si, O k - 1  i(k(k) = 8,(k(k - 1) + &(k)Zg(k(k - l), (61) 

=, e { - , )  - In Pr(q(k) = q). Zi,(klk - 1) = z(k) - h’f& - l),  

(53) 
Pj(klk) = E{[x(k)  - q q v l  [x(k) 

Observing (53), we see that we A .  need only compute 
p(z(k)]z,-*, Q(k) = si, O k -  = in  order  to com- 
pute dk(i, j ) .  

8, -  = e$-  ’) is a Gaussian density function because, 
when Qk (or qk) is  given,  the z(k) is a linear combination x(k) = +x(k - 1) + Yq(k) r(k) (68) 
of Gaussian random variables r(k),  r(k - l),  - - , r(l), 
n(k) ,  n(k - l),  - e ,  n(1). Let 

- 2j(kJk)]’) ek = hi,] (67) 

From (1) and (2), we know thatp(z(k)Jzk-1, Q(k) = Si, space model 
is  its  associated error-covariance matrix, for the  state- 

z(k) = h’x(k) + n(k). (69) 

z^ij(k(k - 1) = E[z(k)(zk-1, Observe  that f j (klk)  and Pj(klk) are conditioned not only 
* .  upon all measurements zk, but also upon Oi , .  

Q(k) = si, Ok-1 = O i - 1 1  (54) The VA for finding min {I’i,N) is  summarized next in 
i 

Z,(klk - 1) = z(k) - 2&lk - 1) (55) a three-step  procedure. 
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Step 1-Znitialization: 

Set k = 1 and  store given values of 3,(0(0) and Pr(OIO). 
Note  that s, can be thought of as  the initial state of a for- 
ward dynamic programming procedure.  In seismic appli- 
cations we usually choose s, = col (0, 0, * * - , 0). 

Step 2-Recursion: Compute dk(i, j )  and 

rdi7 j )  = rj,k - 1 + ddi, 13 
for all i ,  j = 1 ,  2, * 7 M .  (72) 

Then  determine I ' j , k ,  i i ( k ( k )  and P,(klk) for all 1 I i I 
M as follows: 

ri,k = min { F k ( i ,  I ) }  = rk( i ,  I) (73) 

ki(klk) = ii ,l(kIk) (74) 

Pi(k(k) = Pi,l(klk)* (75) 

A 

.i 

Store i i ( k l k ) ,  Pi(klk),  ri,k and the  associated 6 6 for all I 
i I M .  Set k equal to k + 1 and repeat  the above proce- 
dure until k = N .  

Step 3: Choose  the minimum value of I'i,N for 1 I i I 
M as  the desired objective function, which we designate 
J *. Assume that 

J* = min { I ' i ,N)  = rm,N (76) 

then,  the desired suboptimum G N  is which is asso- 
ciated with l?m,N, i.e., 

i 

(77) 

so that 

6 ,  = C O ~  (Q(N) ,   Q(N - I ) ,  - . - , Q(1)) = 6 ; .  (78) 

The suboptimal estimate of q(k) ,  Q(k), is just the first ele- 
ment of Q ( k )  [see ( 2 8 ) ] .  

The VA, as given by our  three-step  procedure, simulta- 
neously sets up the  state  innovation,diagram  and  performs 
forward dynamic programming. Our application is not 
one in which it is possible to set up a complete state inno- 
vation diagram  ahead of time  because  the branch length 
computations of dk(i, j )  require knowledge of i j ( k  - 
1 J k  - 1) andPj(k - I l k  - 1) V 1 I j I M ,  and, these 
quantities only become available at stage k - 1. 

Total computation for our  three-step  procedure is ap- 
proximately equivalent to 2M Kalman filters which oper- 
ate on N observations, plus 4NM multiplications for com- 
puting multiplications in (58 ) ,  6NM additions for 
computing the  additions  in (53),  (58), and (72), and 2NM 
In function evaluations in (58). If the VA is implemented 

using parallel processing, then the total computations will 
be reduced by a  factor of M .  In  this  case, we  only require 
two Kalman filters which operate on N observations, plus 
4N multiplications , 6N additions, and 2N In function eval- 
uations;  but, we need M processors, where M = 2 '. 

As parameter L ,  which determines  the dimension of the 
trellis and the total computations,  is chosen larger, then 
rm,N becomes smaller, i.e., the suboptimum 8, becomes 
better. We have found that when L is chosen equal to n 
(the order of the ARMA wavelet), the  detected QN is com- 
parable to that obtained from  the SMLR detector (Kor- 
mylo and Mendel [ 121). At present, we are limited to rel- 
atively small values of L; but in the  future, it should be 
possible to perform many of the calculations in parallel, 
thereby opening  the  door  to  larger values of L. 

D. Amplitude  Estimation 
Once q(k )  has been detected, we must estimate  the am- 

plitudes of the  detected  spikes. Let 

r = col [ r ( l ) ,  r(2),  - , r (N) ] .  (79) 

When qN is  known, zN and r will be jointly Gaussian; 
hence,  the maximum-likelihood and minimum-variance 
estimates of r are  the  same, namely 

p = E[rlzfV, q N 1 .  (80) 

By combining the  estimate of q(k)  into  the  state variable 
model (68) and (69), i.e., 

x(k) = + x ( k  - 1) + Y Q ( k )  r(k) (81) 

and 

z(k) = h'x(k) + n(k) (82) 

we can obtain 3 using minimum-variance deconvolution 
formulas [4], [ 131. 

IV. COMPUTER SIMULATIONS 

In  the simulations described below  we generated  a Ber- 
noulli-Gaussian sequence p ( k ) ,  convolved it with a known 
wavelet V(k) ,  added white noise n(k)  to the result to obtain 
noisy measurements z(k),  determined q(k) using the VA 
and SMLR  detectors,  and, finally, used minimum-vari- 
ance deconvolution to  estimate spike amplitudes. 

In our first example we used the fourth-order ARMA 
wavelet depicted  in Fig. 5(a). Noisy data (signal-to-noise 
ratio equal to 10) are depicted in Fig. 5(b). Fig. 5(c) de- 
picts results obtained from the VA detector for L = l or 2 
(the  same results were obtained for both values of L). Fig. 
5(d) depicts similar results for L = 3 ,  whereas Fig. 5(e) 
depicts them for L = 4 and 5. Fig. 5 ( f )  depicts the results 
obtained from  the  SMLR  detector (starting with qN = 0). 
Comparing Fig. 5(c)-(e),  we see that performance of the 
VA detector improves as L increases. Additionally, com- 
paring Fig. 5(e) and (0, we see  that  the performances of 
the VA SMLR  detectors  are almost the  same, when pa- 
rameter L is set equal to the wavelet order. 
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Fig. 5. (a) Fourth-order ARMA wavelets  (sampling  time T = 3 ms). (b) 
Synthetic  noisy  data; VA detector  estimates for: (c) L = 1, or 2, (d) L = 
3, and  (e) L = 4 or 5. (f) SMLR detector  estimates  with starting qN = 
0. Circles  depict  true  spikes and  bars depict  estimates. 

In  our second example we used the fourth-order ARMA 
wavelet depicted in Fig.  6(a). Noisy data (signal-to-noise 
ratio equaled 10) are depicted in Fig. 6(b). Fig. 6(c) de- 
picts the  results obtained from  the VA detector for L = 4, 
and Fig. 6(d) depicts similar results obtained from the 
SMLR detector  (starting with qN = 0). Once  again, we 
see  that  the  performances of the two detectors are almost 
the  same. 

In both examples, as well as  others performed by the 
authors,  all missing spikes (i.e., missed detections) have 
very small amplitudes. Both the VA and  SMLR  detectors 
detect spikes of significant amplitude. 

V. CONCLUSIONS 
A VA detector  has  been  presented as a method for lo- 

cating randomly spaced spikes that have Gaussian ampli- 
tudes.  In  order  to apply this  detector,  one must know the 
source wavelet and noise statistics, or, at least have esti- 
mates of them. Although the VA detector  is suboptimum, 

simulation results show that it works well. Its  performance 
is proportional to  the parameter L ,  which determines  the 
size of the  state innovation diagram.  The VA detector will 
become more feasible for larger value of L when, in the 
not-so-distant future, parallel processing becomes more 
feasible. In  other  words,  the  computational requirements 
for larger values of L can  be handled when parallel pro- 
cessing becomes available. 

If the  source wavelet and/or noise parameters  are un- 
known, then these quantities must be  estimated.  The com- 
bined estimation of these quantities and  detection of q(k)  
can be  performed using a block component method,  anal- 
ogous to  the  one  described  in Kormylo [3], Mendel [5], 
and Chi et al. [15], in which the VA detector  is used in- 
stead of other  detectors, such as  the  SMLR  detector. 
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Fig. 6. (a) Fourth-order wavelet (sampling time T = 4 ms). (b) Synthetic 
noisy data. (c) VA detector  estimates for L = 4. (d) SMLR detector  es- 
timates with starting qN = 0. Circles depict true spikes and bars depict 
estimates. 
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